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We consider a horizontal ferrofluid layer sandwiched between two layers of immiscible nonmagnetic fluids.
In a sufficiently strong vertical magnetic field the flat interfaces between magnetic and nonmagnetic fluids
become unstable to the formation of peaks. We theoretically investigate the interplay between these two
instabilities for different combinations of the parameters of the fluids and analyze the evolving interfacial
patterns. We also estimate the critical magnetic field strength at which thin layers disintegrate into an ordered
array of individual drops.
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I. INTRODUCTION

Ferrofluids are colloidal suspensions of nanosize ferro-
magnetic grains in a carrier liquidlike water or oil[1]. The
dipole-dipole interaction between the ferromagnetic particles
is for moderate volume concentrations rather small and fer-
rofluids hence behave magnetically as superparamagnets.
Accordingly in the absence of an external magnetic field the
magnetization of the fluid is zero. If a field is switched on the
magnetic moments of the particles orient themselves along
the field direction giving rise to a macroscopic magnetiza-
tion. The notionsuperparamagnetsrefers to the unusually
high value of the magnetic susceptibility,x=1, . . . ,50, to be
compared withx.10−4 for atomic paramagnets. Hydrody-
namically diluted ferrofluids behave like ordinary Newtonian
liquids with additional contributions in the bulk and surface
force densities stemming from the interaction with the mag-
netic field.

Due to the unique interplay between hydrodynamic and
magnetic degrees of freedom ferrofluids show a variety of
instabilities and pattern formation processes. Among the
most striking phenomena in this respect is the so-called
Rosensweig instability in which the flat free surface of a
ferrofluid becomes unstable when subjected to a sufficiently
strong vertical magnetic field[2]. Although both gravity and
surface tension favor a flat surface the decrease in magnetic
energy for a periodic array of peaks and troughs can be large
enough to overcompensate the increase in potential and sur-
face energy. Both the linear instability and the details of the
pattern formation as revealed by a weakly nonlinear analysis
have been thoroughly studied[2–7].

In the present paper we investigate a sandwich structure
in which a ferrofluid layer of given thickness is placed be-
tween two immiscible nonmagnetic liquids. The system is
prepared such that in the absence of a magnetic field the
layering is stable, i.e., the lower layers have larger densities
than the upper ones in order to prevent the Rayleigh-Taylor
instability. Applying a homogeneous external magnetic field

perpendicular to the undisturbed interfaces gives rise to
Rosensweig instabilities atboth the lower and the upperin-
terface of the ferrofluid layer. Due to the nonlocal character
of the magnetic field energy these instabilities arecoupled
with each other. We first study the interplay and competition
between these instabilities within the framework of the linear
stability analysis. Depending on the parameters of the system
one interface dominates and “slaves” the other one to its
unstable wave number or both interfaces become unstable at
rather similar values of the magnetic field giving rise to a
competition between the corresponding wave numbers. This
is similar to what occurs in Rayleigh-Bénard-Marangoni
convection in systems of two superimposed fluids which are
coupled viscously and thermally at their common interface
[8–11].

In order to characterize the patterns evolving from the
instability we perturbatively probe into the weakly nonlinear
regime by expanding the free energy of the system in powers
of the amplitude of the surface deflections generalizing the
methods developed in Refs.[5,7,12]. When the amplitude of
the surface deformations becomes comparable to the thick-
ness of the ferrofluid layer itself the layer may be decom-
posed into disconnected parts. Within our nonlinear analysis
we are able to estimate the field strength necessary for such a
disintegration to occur. Finally by using experimentally rel-
evant values for the parameters we point out interesting ex-
perimental realizations of our system.

The main difference between our sandwich system and
the somewhat related problem of a ferrofluidfilm investi-
gated in Ref.[13] is the thickness of the ferrofluid layer. For
a film this thickness is by definition much smaller than the
wavelength of the unstable mode. In the experiments re-
ported in Ref.[13] the film thickness varied between 5 and
60 mm. The hydrodynamics of the film can then be very well
described within the lubrication approximation. In our sys-
tem the thickness of the ferrofluid layer is comparable to the
unstable wavelength which is of the order of centimeters and
correspondingly the full hydrodynamic equations have to be
solved to describe its dynamics.

II. BASIC EQUATIONS

We consider a horizontally unbounded ferrofluid layer of
thicknessd and densityrs2d sandwiched between two immis-
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cible, nonmagnetic liquids with densitiesrs1d and rs3d. The
interfaces between the layers are parametrized by the func-
tions z=zsddsxd and z=zs0dsxd where for simplicity we will
only consider one-dimensional interface modulations(see
Fig. 1). It has recently been clarified that this situation can be
realized experimentally by using anoblique magnetic field
[14]. The interface tensions at the two interfaces are denoted
by ssdd andss0d.

The hydrodynamics of the system is quite generally de-
scribed by the Navier-Stokes equation and the continuity
equation. However, since the situation of interest is a static
one these equations can be replaced by the pressure equilib-
rium at the two interfaces. This in turn is equivalent to the
minimum condition for the total energy functional.

The energy per area in thex-y plane comprises three parts
Eh, Es, andEm denoting the hydrostatic, the interfacial, and
the magnetic energies, respectively. The first two parts are
given by the well-known expressions

Eh = gKrs1dE
−`

zs0dsxd
dz z+ rs2dE

zs0dsxd

zsddsxd
dz z+ rs3dE

zsddsxd

`

dz zL
s1d

and

Es = kss0dÎ1 + f]xz
s0dsxdg2 + ssddÎ1 + f]xz

sddsxdg2l, s2d

whereg is the acceleration due to gravity. The bracketsk¯l
denote the spatial average along thex direction,

k¯l = lim
L→`

1

2L
E

−L

L

dx¯ . s3d

The volume density of magnetic energy is of the general
form [17]

em = − m0E
0

H0

dH8 ·M sH8d, s4d

whereM denotes the magnetization,H0 the magnetic fieldin
the absenceof any permeable material, andm0 is the perme-
ability of free space. Assuming a linear magnetization law
M =xH of the ferrofluid with the susceptibilityx character-

izing its magnetic properties we hence find in the present
case for the magnetic energy per unit area

Em = −
m0 x

2 KE
zs0dsxd

zsddsxd
dz Hsx,zd ·HextL . s5d

HereHext denotes the homogeneous external magnetic field
produced by the experimental setup and in the absence of the
ferrofluid andHsx,zd is the actual magnetic field in the fer-
rofluid.

Subtracting an irrelevant constant the complete energy
functional of the system can hence be written as

Efzs0dsxd,zsddsxdg =Kg

2
fsrs1d − rs2ddzs0d2 + srs2d − rs3ddzsdd2g

−
m0 x

2
E

zs0dsxd

zsddsxd
dz Hsx,zd ·Hext

+ ss0dÎ1 + f]xz
s0dsxdg2

+ ssddÎ1 + f]xz
sddsxdg2L . s6d

The magnetic field has to obey the magnetostatic Maxwell
equations

= ·B = 0 and = 3 H = 0 s7d

with B=m0s1+xdH. These equations are completed by the
following boundary conditions:

lim
z→±`

Hsx,zd = Hext ez s8d

and

fsBs3d − Bs2dd ·nsddgz=zsdd = 0,

fsH s3d − H s2dd 3 nsddgz=zsdd = 0, s9d

fsBs2d − Bs1dd ·ns0dgz=zs0d = 0,

fsH s2d − H s1dd 3 ns0dgz=zs0d = 0, s10d

wherens0d and nsdd denote the normal vectors on the lower
and the upper interface, respectively. Note that the last four
boundary conditions have to be fulfilled at the free interfaces
of the ferrofluid layer. They hence describe the feedback of
the interface modulations on the magnetic field. Note also
that therefore the energy(6) depends in a complicated non-
local way on the surface deflectionszs0dsxd andzsddsxd

It is useful to introduce for each of the three liquid layers
a scalar magnetic potentialFs1d, Fs2d, andFs3d, respectively.
The potentials are related to the corresponding magnetic
fields by

H sid = − = Fsid s11d

and as a consequence of Eq.(7) they obey the Laplace equa-
tions

FIG. 1. Schematic two-dimensional plot of a ferrofluid layer of
depthd with infinite horizontal extension sandwiched between two
nonmagnetic liquids of infinite depth.
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DFsid = 0. s12d

The boundary conditions(9) and (10) for H andB translate
in the well-known way into conditions for the continuity of
the potentials themselves and jumps of their normal deriva-
tives [17].

It is furthermore convenient to measure all distances in
units of the inverse critical wave number

1

kc,R
=Î ssdd

srs2d − rs3ddg
s13d

of the Rosensweig instability on an infinitely deep ferrofluid
layer, all magnetic fields in units of the corresponding critical
Rosensweig field

Hc,R = S s1 + xds2 + xd2Îsrs2d − rs3ddgssdd

x2m0
D1/2

, s14d

and energies per area in units ofssdd. Moreover we introduce
the parameter ratios

r1 =
rs1d

rs2d , r3 =
rs3d

rs2d ,

s15d

s =
ss0d

ssdd , h =
x

x + 2

with h now characterizing the magnetic properties of the
ferrofluid. After rescaling the magnetic potentials according
to

−
s2 + xd
xHext

Fs1d → Fs1d, s16d

−
s1 + xds2 + xd

xHext
Fs2d → Fs2d, s17d

−
s2 + xd
xHext

Fs3d → Fs3d, s18d

the energy(6) assumes the dimensionless form

Efzs0dsxd,zsddsxdg =K1

2
FSr1 − 1

1 − r3
Dzs0d2 + zsdd2G

− Hext
2 sFs2duz=zsddsxd − Fs2duz=zs0dsxdd

+ sÎ1 + f]xz
s0dsxdg2 + Î1 + f]xz

sddsxdg2L .

s19d

The boundary conditions(9) and (10) translate into

f]xsFs3d − Fs2dd]xz
sdd − ]zsFs3d − Fs2ddgz=zsdd = 0,

F1 + h

1 − h
Fs3d − Fs2dG

z=zsdd
= 0, s20d

and

f]xsFs2d − Fs1dd]xz
s0d − ]zsFs2d − Fs1ddgz=zs0d = 0,

FFs2d −
1 + h

1 − h
Fs1dG

z=zs0d
= 0, s21d

respectively, whereas the asymptotic boundary conditions(8)
acquire the form

lim
z→+`

]zF
s3dsx,zd = lim

z→−`
]zF

s1dsx,zd =
1

h
. s22d

III. LINEAR STABILITY ANALYSIS

In this section we study the linear stability of the refer-
ence state with flat interfaceszs0d;0 andzsdd;d. To this end
we use the ansatzes

zs0d = A1 cosskxd,
s23d

zsdd = d + B1 cosskxd

for the interface profiles. The corresponding forms of the
magnetic potentials are then in view of Eqs.(12) and (22)

Fs3d =
z

h
−

2d

1 + h
+ u1e

−kz cosskxd,

Fs2d =
z

h
+ sv1

+ekz+ v1
−e−kzd cosskxd, s24d

Fs1d =
z

h
+ w1e

kz cosskxd.

By using the linearized version of the boundary condi-
tions (20) and(21) we can express the amplitudesu1,v1

+,v1
−,

andw1 in terms ofA1 andB1. This then allows us to expand
the energy(19) up to second order inA1 and B1 with the
result

FIG. 2. Determinant of the Hessian for an infinitely thick fer-
rofluid layer as function of the dimensionless wave numberk. Pa-
rametersr1=2, r3=0.5,s=0.5,h=1.5 are chosen such that the two
independent interfaces get unstable at the same value of the mag-
netic field (by definition Hc=1), but at different wave numbers
kc

sud=1 for the upper interface andkc
sld=2 for the lower one.
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EsA1,B1d = Es0,0d +
1

4
Sr1 − 1

1 − r3
− 2 Hext

2 k
h e−2 dk − 1

h2 e−2 dk − 1
+ s k2DA1

2

+
1

4
S1 − 2Hext

2 k
h e−2 dk − 1

h2 e−2 dk − 1
+ k2DB1

2 + Hext
2 ksh − 1d

e−dk

h2 e−2 dk − 1
A1B1. s25d

The energy has clearly a stationary point atA1=B1=0. It is stable as long as the Hessian

H =1
1

2
Sr1 − 1

1 − r3
− 2 Hext

2 k
h e−2 dk − 1

h2 e−2 dk − 1
+ s k2D Hext

2 ksh − 1d
e−dk

h2 e−2 dk − 1

Hext
2 ksh − 1d

e−dk

h2 e−2 dk − 1

1

2
S1 − 2Hext

2 k
h e−2 dk − 1

h2 e−2 dk − 1
+ k2D 2 s26d

is positive definite. An instability is signaled by a vanishing
determinant ofH.

We note that, of course, exactly the same condition results
from the usual procedure of linear stability analysis. In this
case one investigates the dispersion relationvskd of interface
deformations of the form zs0d=A1 expfiskx−vtdg and
zsdd=d+B1 expfiskx−vtdg resulting from a linearization of
the equations of motion. An instability occurs ifv acquires a
positive imaginary part. The linearized equation of motion
corresponds to the quadratic approximation of the energy. An
advantage of the energetic approach is that it applies equally
well to inviscid and viscous fluids. On the other hand it does
not give information on the linear growth rate of the unstable
perturbation.

If the layer thicknessd tends to infinity it can be inferred
from Eq. (26) that the off-diagonal elements ofH tend to
zero whereas the diagonal elements reduce to the well-
known form of a usual Rosensweig instability on a infinitely
deep layer of ferrofluid[1]. As expected we hence find in this
limit two uncoupledinterfaces showingindependentRosens-
weig instabilities of the usual kind. The situation is depicted
in Fig. 2 where we have shown the determinant of the Hes-
sian matrixH as function of the wave numberk for the case
in which the critical field of the two instabilities coincides
but the respective critical wave numbers do not.

The situation changes if the layer thickness is reduced as
shown in Fig. 3. Due to the interaction between the surface

deformations mediated by the magnetic field the degeneracy
observed in the cased=` is lifted and the lower layer
“slaves” the upper one to its critical wave number. At the
same time the critical wave number is shifted somewhat,
kcÞ1, from its “pure” value of the decoupled case. The same
holds true for the critical magnetic field strength. Moreover,
the two interface deflections accommodate to each other in
an antiphase fashion. This manifests itself in differentsigns
of A1 and B1 building the components of the eigenvector
corresponding to the zero eigenvalue ofH. This anti phase
orientation was to be expected intuitively since it allows the
largest gain in magnetic energy(cf. Fig. 1).

Which interface dominates which depends on the param-
eter values of the system and accordingly a crossover can be
observed when some parameter is changed. In Figs. 4–6 we
give some examples of such crossover phenomena when the
ratio s between the two interface tensions is changed. Figure
4 displays the relative amplitude of the two surface deflec-
tions. The figure clearly indicates that for small values ofs,
i.e., when ss0d!ssdd, the lower instability dominates,
A1@B1, whereas with increasings the amplitude of the
lower interface deflection decreases and the coupled unstable
modes get more and more dominated from the upper inter-
face. Similarly Figs. 5 and 6 show the crossover of the criti-
cal wave numberkc and the critical fieldHc, respectively,
whens is varied. In all cases the crossover gets sharper with
increasing depthd of the ferrofluid layer as expected.

FIG. 3. Same as Fig. 2 for a layer thicknessd=2. The coupling
between the two surfaces now lifts the degeneracy characteristic of
Fig. 2 giving rise to new critical values for the wave vector
kc=0.96, and the magnetic fieldHc=0.98.

FIG. 4. Relative amplitudes of the unstable modes as function of
the ratios of the interface tensions as defined in Eq.(15). The layer
thickness isd=2 (dashed), d=1 (dotted), and d=0.5 (solid). The
other parameter values areh=0.66,r1=1.2, andr3=0.85.
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Although the linear analysis already reveals some aspects
of the interplay between the two Rosensweig instabilities it is
not able to yield information about the static pattern of inter-
face deflections that will eventually emerge. In order to ad-
dress this problem we need to extend our analysis to include
nonlinear terms able to saturate the exponential growth pre-
dicted by the linear stability theory. This is the subject of the
following section.

IV. WEAKLY NONLINEAR ANALYSIS

In our analysis of the energy of the surface deflections the
instability of the flat surface corresponds to the minimum of
the energy atA1=B1=0 turning into a saddle point. Within
the quadratic approximation the energy hence decreases
down to −̀ with increasing amplitudesA1 andB1. In reality,
however, already for moderate values ofA1 and B1 higher-
order terms in the expansion of the energy have to be in-
cluded which cure this divergence. As a result the energy
again increaseswith increasing amplitudesA1 and B1 and
correspondingly a new minimum forms describing the new
stationary surface profileszs0dsxd andzsddsxd.

We assume that the susceptibility of the ferrofluid is suf-
ficiently small such that an expansion of the energy(19) up

to fourth order in the amplitudes of the surface deflection is
sufficient to find the new stationary state. Such an expansion
is equivalent to the derivation of a third-order amplitude
equation for the unstable mode[15]. In order to obtain a
consistent expansion the Fourier expansions(23) and (24)
have to be extended according to

zsddsxd = d + o
n=1

2

Bn cossnkxd,

s27d

zs0dsxd = o
n=1

2

An cossnkxd,

and

Fs3d =
z

h
−

2d

1 + h
+ o

n=1

2

une
−nkz cossnkxd,

Fs2d =
z

h
+ o

n=1

2

svn
+enkz+ vn

−e−nkzdcossnkxd, s28d

Fs1d =
z

h
+ o

n=1

2

wne
nkz cossnkxd.

To explicitly perform the minimization of the free energy
a variant of the computer algebra code documented in Ref.
[12] is used. Fixing the desired order of the expansion(four
in our case) this program selects in a first step those ampli-
tude combinations which are compatible with the transla-
tional invariance of the problem inx direction. In our case
only 17 of the originally 70 terms remain after this proce-
dure. In a second step the ansatzes(27) and(28) are used in
the boundary conditions(20) and (21) and the coefficients
un,vn

+,vn
−,wn are determined as polynomials in theAn andBn.

After this the energy(19) can be expanded up to fourth order
in A1 andB1 and up to second order inA2 andB2. Several of
the remaining terms disappear after the integration overx
implicit in the horizontal average in Eq.(19). Minimizing the
resulting expression inA2 and B2 we find that both are of
orderA1

2,B1
2 which proves the consistency of our expansiona

posteriori. Finally the free energy is minimized in the ampli-
tudesA1 andB1 of the main modes. The final expressions are
explicit but too long to be displayed[16].

TABLE I. Magnetic fluid parameters used in Figs. 7–9.

Experimental parameters Dimensionless values

rs1d=1.69 g/cm3

rs2d=1.12 g/cm3 r1=1.51

rs3d=0.0013 g/cm3 r3=0.001

ss0d=16.6 mN/m

ssdd=25.9 mN/m s=0.64

d=1.54 mm d=1.0

x=0.8 h=0.29

FIG. 5. Dimensionless critical wave number of the linear insta-
bility as function of the ratios of interface tensions for layer thick-
ness d=` (long dashed), d=2 (dashed), d=1 (dotted), d=0.5
(solid). Other parameters as in Fig. 4.

FIG. 6. Dimensionless critical magnetic fieldHc of the linear
instability as function of the ratios between the interface tensions
for layer thicknessd=` (long dashed), d=2 (dashed), d=1 (dotted),
andd=0.5 (solid). Other parameters as in Fig. 4.
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For d=` we again reproduce the results obtained for the
standard Rosensweig instability on a layer of infinite depth
[5,7]. For d,` the two interfaces couple and the two sur-
face deflections arrange in a stable, antiphase pattern.

To elucidate this final structure in detail we consider the
case of experimentally realistic parameters collected in Table
I. From the linear stability analysis we find for the dimen-
sionless wave numberkc=0.84 and for the corresponding
dimensionless fieldHc=0.75. The stationary interface pro-
files resulting from the weakly nonlinear analysis are dis-
played in Figs. 7–9. As can be seen the lower interface is the
dominating one. For slightly overcritical magnetic field the
lower interface already shows an array of developed Rosens-
weig ridges whereas the upper one is just gently curved by
the inhomogeneous magnetic pressure resulting from the
field modulation induced by the lower interface(Fig. 7).
With increasing field both deformations grow(Fig. 8). A
particular interesting case is shown in Fig. 9 where the am-
plitudes of the surface deflections have increased to such an
extent that the two interfaces touch each other. Correspond-
ingly the ferrofluid layer stays no longer connected but dis-
integrates. In our two-dimensionalsx,zd model this gives rise
to the formation of parallel slices. In a more realistic three-
dimensional setting, including surface variations iny direc-
tion as well, the layer would evolve into a regular array of
disconnectedislands. A similar phenomenon occurs in the
usual Rosensweig instability on very shallow layers of fer-
rofluid [7].

FIG. 7. Stationary pattern of coupled surface deflections that
evolve after the instability of the state with flat interfaces. The fer-
rofluid layer is shown in gray. Parameters are given in Table I, the
value of the external magnetic field isHext=1.0001Hc. The figure
uses dimensionless units.

FIG. 8. Same as Fig. 7 forHext=1.01Hc.

FIG. 9. Same as Fig. 7 forHext=1.04Hc.

FIG. 10. Maximum(full line) and minimum(dashed line) di-
mensionless thickness of the ferrofluid layer as function of the di-
mensionless external field strength for the parameters given in Table
I. The dots correspond to the situations displayed in Figs. 7–9,
respectively. For the field at which the minimum distance between
the interfaces shrinks to zero the layer disintegrates into an array of
disconnected rolls.

FIG. 11. Region of consistency of our nonlinear treatment of the
pattern formation in the plane spanned by the dimensionless layer
thicknessd and the susceptibilityx. Outside the shaded region the
fourth-order terms in the expansion of the energy are not sufficient
to saturate the linear instability and higher-order terms are needed
to get finite results for the amplitudes of interface deflections when
minimizing the energy. The dashed line is the result of Ref.[7] for
a ferrofluid layer with rigid bottom. Parameter values are from
Table I.
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In Fig. 10 we have shown the maximum and the mini-
mum layer thickness as function of the magnetic field. The
formation of islands occurs when the lower branch intersects
with the horizontal axis. Note that, at least for the parameters
of Table I, this happens already for a field exceeding the
critical one by only 4%.

With the appearance of such an island structure our theo-
retical model breaks down. To study the future evolution of
the structure when increasing the field still further it is more
appropriate to start from a model of independent ferrofluid
drops[18].

In omitting higher orders of the expansion of the energy
in the amplitudes of surface deflection in our nonlinear
analysis we have tacitly assumed that the fourth-order terms
are sufficient to saturate the linear instability, i.e., to make
Efzs0d ,zsddg→` for fszs0dd2+szsddd2g→`. This, however, is
correct only if the susceptibilityx of the ferrofluid is not too
large and the thicknessd of the layer is not too small. In
Fig. 11 we have displayed the region in thed-x plane, in
which our treatment is consistent.

Finally Fig. 12 gives the phase diagram of the ferrofluid
sandwich structure showing the transition lines from flat in-
terfaces to antiphase interface modulations and further to dis-
connected regions. It would be interesting to compare the
location of these theoretical lines with experimental results.

V. CONCLUSION

In the present paper we have investigated the linear and
weakly nonlinear theory of two coupled Rosensweig insta-
bilities in a ferrofluid sandwich structure. To this end an ap-
proximate expression for the energy of the system was mini-
mized in the deflection amplitudes of the two interfaces
between magnetic and nonmagnetic liquids. The approxi-
mate expression for the free energy was obtained from a
fourth-order perturbative expansion in these interface deflec-
tions. At the onset of instability the two individual Rosens-
weig instabilities compete and depending on the concrete
values of the parameters one is able to “slave” the other one
to its unstable wave number. As a result, a stable antiphase
pattern of two interacting modulated interfaces arises. For
sufficiently thin layers and sufficiently large magnetic fields
the two curved interfaces may touch each other which brings
about the disintegration of the layer and gives rise to discon-
nected rolls or islands. Using realistic parameter values we
gave estimates of the required layer thicknesses and mag-
netic fields necessary to observe this phenomenon in an ex-
periment. Being perturbative in nature our theoretical analy-
sis has a limited range of validity which we quantified by
estimating the contributions of higher-order terms. It is pos-
sible though tedious to push the expansion to higherorders in
a systematic way.
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order terms are necessary to accurately determine the location of the
transition line. In the shaded region the fourth-order terms in the
energy are not sufficient to saturate the linear instability and higher-
order terms are mandatory, cf. Fig. 11.
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