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Double Rosensweig instability in a ferrofluid sandwich structure
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We consider a horizontal ferrofluid layer sandwiched between two layers of immiscible nonmagnetic fluids.
In a sufficiently strong vertical magnetic field the flat interfaces between magnetic and nonmagnetic fluids
become unstable to the formation of peaks. We theoretically investigate the interplay between these two
instabilities for different combinations of the parameters of the fluids and analyze the evolving interfacial
patterns. We also estimate the critical magnetic field strength at which thin layers disintegrate into an ordered
array of individual drops.
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[. INTRODUCTION perpendicular to the undisturbed interfaces gives rise to
) ] ) ) Rosensweig instabilities doth the lower and the uppeén-
Ferrofluids are colloidal suspensions of nanosize ferroerface of the ferrofluid layer. Due to the nonlocal character
magnetic grains in a carrier liquidlike water or §1l]. The  f the magnetic field energy these instabilities aceipled
fj|pole-d|pole interaction between the ferromagnetic particlegyiin each other. We first study the interplay and competition
is for moderate volume concentrations rather small and ferpeqyeen these instabilities within the framework of the linear
rofluids hence behave magnetically as superparamagneigapijity analysis. Depending on the parameters of the system
Accordingly in the absence of an external magnetic field the,e interface dominates and “slaves” the other one to its
magnetization of the fluid is zero. If a field is switched on the ,,staple wave number or both interfaces become unstable at
magnetic moments of the particles orient themselves alongyiner similar values of the magnetic field giving rise to a
the field direction giving rise to @ macroscopic magnetiza-competition between the corresponding wave numbers. This
tion. The notionsuperparamagnetsefers to the unusually s similar to what occurs in Rayleigh-Bénard-Marangoni

high value of the magpetic susceptibilify=1, ..., 50, to be  conyection in systems of two superimposed fluids which are
compared withy=10" for atomic paramagnets. Hydrody- cqypled viscously and thermally at their common interface
namically diluted ferrofluids behave like ordinary Newtoniang_1 1.

liquids with additional contributions in the bulk and surface ~ | ‘order to characterize the patterns evolving from the

force densities stemming from the interaction with the mag1nstapility we perturbatively probe into the weakly nonlinear
netic field. o , regime by expanding the free energy of the system in powers
Due to the unique interplay between hydrodynamic andyt the amplitude of the surface deflections generalizing the
magnetic degrees of freedom ferrofluids show a variety ofy,ethods developed in Refi,7,13. When the amplitude of
instabilities and pattern formation processes. Among thgne syrface deformations becomes comparable to the thick-
most striking phenomena in this respect is the so-callefiess of the ferrofiuid layer itself the layer may be decom-
Rosensweig instability in which the flat free surface of angsed into disconnected parts. Within our nonlinear analysis
ferrofluid becomes unstable when subjected to a sufficientlyye are able to estimate the field strength necessary for such a
strong vertlcgl magnetic fielf2]. Although both gravity and disintegration to occur. Finally by using experimentally rel-
surface tension favor a flat surface the decrease in magnetig,ant values for the parameters we point out interesting ex-
energy for a periodic array of peaks and troughs can be 'argﬁerimental realizations of our system.
enough to overcompensate the increase in potential and sur- The main difference between our sandwich system and
face energy. Both the linear instability and the details of thehe somewhat related problem of a ferrofidfitin investi-
pattern formation as revealed by a weakly nonlinear analysigated in Ref[13] is the thickness of the ferrofluid layer. For
have been thoroughly studigé—7]. _ a film this thickness is by definition much smaller than the
In the present paper we investigate a sandwich structurgayelength of the unstable mode. In the experiments re-
in which a ferrofluid layer of given thickness is placed be'ported in Ref[13] the film thickness varied between 5 and
tween two immiscible nonmagnetic liquids. The system isgg ,;m. The hydrodynamics of the film can then be very well
prepared such that in the absence of a magnetic field thgescrined within the lubrication approximation. In our sys-
layering is stable, i.e., the lower layers have larger densitiegm, the thickness of the ferrofluid layer is comparable to the
than the upper ones in order to prevent the Rayleigh-Taylognstaple wavelength which is of the order of centimeters and
instability. Applying a homogeneous external magnetic f'e|dcorrespondingly the full hydrodynamic equations have to be
solved to describe its dynamics.

*Present address: Carl von Ossietzky Universitat, Institut fir II. BASIC EQUATIONS
Physik, D-26111 Oldenburg, Germany. Email address: We consider a horizontally unbounded ferrofluid layer of
rannacher@theorie.physik.uni-oldenburg.de thicknessd and densityp® sandwiched between two immis-
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2y A A izing its magnetic properties we hence find in the present
g l A § § § Hext, case for the magnetic energy per unit area
@) x=0 )
¢d) En=- 224 f dzZH(X2) ‘He).  (5)
d*% 2 A9
2) x>0 HereH,,; denotes the homogeneous external magnetic field
produced by the experimental setup and in the absence of the
_ - ferrofluid andH (x, 2) is the actual magnetic field in the fer-
0 C(O) rofluid. . _
(1) x=0 Subtracting an irrelevant constant the complete energy
functional of the system can hence be written as

FIG. 1. Schematic two-dimensional plot of a ferrofluid layer of 0 g g, o 2 A0 5 3 2
depthd with infinite horizontal extension sandwiched between two E[{?(x),{?(x)] = 5[(/3 )= p )07+ (p@ = p3) 7]

nonmagnetic liquids of infinite depth.
po x (€9
cible, nonmagnetic liquids with densitigs? and p©®. The ) J dzH(x,2) - Hex

©
interfaces between the layers are parametrized by the func- “X)—
tions z=¢9(x) and z=¢9(x) where for simplicity we will + 0 OV1 +[,,0x) 7
only consider one-dimensional interface modulatigese
Fig. 1). It has recently been clarified that this situation can be + N1 +[0 Y0 ). (6)

realized experimentally by using ablique magnetic field
£§41}(;I;haeng1(tfe(gace tensions at the two interfaces are der]Ote‘ijhe magnetic field has to obey the magnetostatic Maxwell
The hydrodynamics of the system is quite generally de_equatlons
scribed by the Navier-Stokes equation and the continuity V-B=0 and V XH=0 (7)
equation. However, since the situation of interest is a static
one these equations can be replaced by the pressure equillith B=uq(1+x)H. These equations are completed by the
rium at the two interfaces. This in turn is equivalent to thefollowing boundary conditions:
minimum condition for the total energy functional. .
The energy per area in they plane comprises three parts Z'Lnij (X,2) =Hext &, (8)
E,, Es, andE,, denoting the hydrostatic, the interfacial, and B
the magnetic energies, respectively. The first two parts arand

given by the well-known expressions
[(B®-B®). n(d)]zzg@ =0,

p (20 o [(9® N
E,=gof pV dz z+ p®@ dz z+ p® dz z
o O D) [(H(3) - H(Z)) X n(d)]zzg(d) =0, 9
(1)
and [(B®-BY)-n®],_,0=0,

Es=(a V1 +[3L00) P+ o' N1 +[0L Y0,  (2) [(H?-HY) x nO]_ =0, (10
Whereg is the acceleration due to gravity. The braCKetS> Wheren(o) and n(d) denote the normal vectors on the lower
denote the spatial average along theirection, and the upper interface, respectively. Note that the last four

L boundary conditions have to be fulfilled at the free interfaces
(-+y=lim 1 dx--- . (3) of the ferrofluid layer. They hence describe the feedback of
Lo 2L J the interface modulations on the magnetic field. Note also

) _ _ that therefore the energ¥) depends in a complicated non-
The volume density of magnetic energy is of the generalpcal way on the surface deflectiog®(x) and £@(x)

form [17] It is useful to introduce for each of the three liquid layers
Ho a scalar magnetic potentidl®, ®@_ and®®, respectively.
em——,U«of dH'-M(H"), (4) The potentials are related to the corresponding magnetic
0 fields by
whereM denotes the magnetizatiadf, the magnetic fieldn HO=— v e (11

the absencef any permeable material, ang is the perme-
ability of free space. Assuming a linear magnetization lawand as a consequence of Eg) they obey the Laplace equa-
M =xH of the ferrofluid with the susceptibility character- tions
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APV =0, (12)

The boundary condition®) and(10) for H andB translate
in the well-known way into conditions for the continuity of

[ax((p(z) - q)(l))axg(o) - ﬁz(q)(z) - (I)<l))]z:§(0) =0
[(D(Z) L 77@”} =0

the potentials themselves and jumps of their normal deriva- 1-79 =0 ’

tives[17].

It is furthermore convenient to measure all distances if€SPectively, whereas the asymptotic boundary conditigns
units of the inverse critical wave number acquire the form

(21)

1_ Y
ker YV (p?-pg

of the Rosensweig instability on an infinitely deep ferrofluid
layer, all magnetic fields in units of the corresponding critical

lim 3,2®(x,2) = lim 6, (x,2) = =

Z—+0 Z—-%

(13) (22

Rosensweig field

1+ )2+ 2V (0@ - p®)go@ |12
Hc,R=< X2+ x02\(p7 = p™)g o

XZ,U«O
and energies per area in unitsaf). Moreover we introduce
the parameter ratios

LR

3= y

pe pe
(15

50 X

U_ﬁ' 77:)(+2

Ill. LINEAR STABILITY ANALYSIS

In this section we study the linear stability of the refer-
ence state with flat interfacg®’) = 0 and{¥ =d. To this end
we use the ansatzes

{9=A; cogkx),
(23)
[9=d+ B, cogkx)

for the interface profiles. The corresponding forms of the
magnetic potentials are then in view of E¢$2) and(22)

with » now characterizing the magnetic properties of the

ferrofluid. After rescaling the magnetic potentials according

to

2+
| X)¢)(1 o, (16)
XHext

_AE0CHY po) | g (17)
XHext ,
2+
| X)q)(s ®B, (18
XHext

the energy(6) assumes the dimensionless form

ELL000,£900] = <§[(’1’1%;)4<°>2 : g“”"’}

- ngt((p(2)|zzg(d)(x) - CD(2)|Z:50)(X))

+ V1 +[0 00+ V1 + [axd">(x)]2> :

(19
The boundary condition®) and(10) translate into
[é’x(q)(?)) - (D(Z))é’xg(d) - ﬁz(q)(g) - q)(z))]zzg(d) =
1+
{ =T qﬂ)} =0, (20)
1-7 z=(@

and

z 2d
PO ==- +ue 2 cogky),
n l+tg
z
(I)(Z) = — + (UI 2+ UIe_kZ) COikX), (24)
n

ow=24 w; €% cogkx).
Y

By using the linearized version of the boundary condi-
tions (20) and(21) we can express the amplitudegv;,v7,
andw; in terms ofA; andB,. This then allows us to expand
the energy(19) up to second order i#\; and B; with the
result

det (#H)

0.02 1 1 1 1 1

FIG. 2. Determinant of the Hessian for an infinitely thick fer-
rofluid layer as function of the dimensionless wave nuniodPa-
rameterg,=2, p3=0.5,0=0.5, »=1.5 are chosen such that the two
independent interfaces get unstable at the same value of the mag-
netic field (by definition H,=1), but at different wave numbers
k(cu):l for the upper interface arki'):z for the lower one.
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~ 1 p1— 1 , 7 e—2 dk _ )
E(A,By) =E(0,0) + Z( 1-p; -2 Hextkm +0 KA
1 7 e—2 dk _ 1 e—dk
+ Z(l - 2H2,, km + K2 |B2+ H2 k(7 - 1)mAlBl- (25)

The energy has clearly a stationary pointAat=B;=0. It is stable as long as the Hessian

1 p1— 1 5 7 e—2 dk _ 1 ) 5 e—dk
B oHZ kg + 0 K2 H2 k(71— D5 —a—
(1—p3 ext 2 gz dk_ o extK(77 )nze—zdk_l

2
—dk —2 dk (26)
e 1 n € -1

Haak(n- D5 ac “(1-212 k—+k2>
ext (77 )772 e—2 dk_l 2( ext 772e—2dk_1

is positive definite. An instability is signaled by a vanishing deformations mediated by the magnetic field the degeneracy
determinant oftH. observed in the casd=« is lifted and the lower layer

We note that, of course, exactly the same condition resultsslaves” the upper one to its critical wave number. At the
from the usual procedure of linear stability analysis. In thissame time the critical wave number is shifted somewhat,
case one investigates the dispersion relai@k) of interface k. # 1, from its “pure” value of the decoupled case. The same
deformations of the form {@=A; exdi(kx-wt)] and holds true for the critical magnetic field strength. Moreover,
[9=d+B; exfi(kx—wt)] resulting from a linearization of the two interface deflections accommodate to each other in
the equations of motion. An instability occursdfacquires a an antiphase fashion. This manifests itself in differgighs
positive imaginary part. The linearized equation of motionof A; and B; building the components of the eigenvector
corresponds to the quadratic approximation of the energy. Agorresponding to the zero eigenvalue?ef This anti phase
advantage of the energetic approach is that it applies equallyrientation was to be expected intuitively since it allows the
well to inviscid and viscous fluids. On the other hand it doesargest gain in magnetic energgf. Fig. 1).
not give ipformation on the linear grOWth rate of the unstable Which interface dominates which depends on the param-
perturbation. o , eter values of the system and accordingly a crossover can be

If the layer thicknessl tends to infinity it can be inferred  gpserved when some parameter is changed. In Figs. 4—6 we
from Eq. (26) that the off-diagonal elements 61 tend 0 4iye some examples of such crossover phenomena when the
zero whereas the diagonal elements reduce to the welky, ; hetween the two interface tensions is changed. Figure

known form of a “SU?" Rosensweig instability on a infinitgly4 displays the relative amplitude of the two surface deflec-
deep layer of ferrofluidl]. As expected we hence find in this tions. The figure clearly indicates that for small valuesrof

limit two uncouplednterfaces showinghdependenRosens- e when 0@ <g® the lower instability dominates
weig instabilities of the usual kind. The situation is depicted" g0 b . Y :
A,;>B,;, whereas with increasing- the amplitude of the

in Fig. 2 where we have shown the determinant of the HesI i terf deflection d dth led bl
sian matrixH as function of the wave numbérfor the case 'OWer Interface deflection decreases and the coupled unstable

in which the critical field of the two instabilities coincides Modes get more and more dominated from the upper inter-
but the respective critical wave numbers do not. face. Similarly Figs. 5 and 6 show the crossover of the criti-

The situation changes if the layer thickness is reduced a@l wave numbek. and the critical fieldH., respectively,

shown in Fig. 3. Due to the interaction between the surfacd/néno is varied. In all cases the crossover gets sharper with
increasing deptld of the ferrofluid layer as expected.

0.12 T T T T T
1 S T T T T
0.1 i | N
det (3) 0.08 . 081
et r
0.06 B A1 06 |
A%+B2 |
0.04 J
04
0.02 i L
02
0 -
00255 1 5 > 25 %
(o)
FIG. 3. Same as Fig. 2 for a layer thickness2. The coupling FIG. 4. Relative amplitudes of the unstable modes as function of

between the two surfaces now lifts the degeneracy characteristic dfie ratioo of the interface tensions as defined in ELp). The layer
Fig. 2 giving rise to new critical values for the wave vector thickness isd=2 (dasheg, d=1 (dotted, and d=0.5 (solid). The
k.=0.96, and the magnetic field.=0.98. other parameter values arge=0.66,p,=1.2, andp3=0.85.
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1 ' ' ' ' ' to fourth order in the amplitudes of the surface deflection is
L8 1 sufficient to find the new stationary state. Such an expansion
AN is equivalent to the derivation of a third-order amplitude
1.6 equation for the unstable modé&5]. In order to obtain a
consistent expansion the Fourier expansi@? and (24)

14 have to be extended according to

1.3

1.2 2

{9(x) =d+ > B, cos(nkx),

11

| wpperinterface T n=1
0.90.4 0{5 0{6 0{7 0{8 0{9 1 2 (27)
d {9 =2 A, cos(nkx),
n=1

FIG. 5. Dimensionless critical wave number of the linear insta-
bility as function of the ratiar of interface tensions for layer thick- and
nessd=%« (long dashey d=2 (dashe¢l d=1 (dotted, d=0.5 )
(solid). Other parameters as in Fig. 4. z 2d
PO == - + X, u,e "™ cognkx),
7 1+ o5

Although the linear analysis already reveals some aspects
of the interplay between the two Rosensweig instabilities it is
not able to yield information about the static pattern of inter-
face deflections that will eventually emerge. In order to ad-
dress this problem we need to extend our analysis to include
nonlinear terms able to saturate the exponential growth pre- )
dicted by the linear stability theory. This is the subject of the y_Z nkz
following section. o= 7 * glwne cognkx.

2
z
DD ==+ (vie™+ v e ™)codnky),  (28)
n=1

IV. WEAKLY NONLINEAR ANALYSIS To explicitly perform the minimization of the free energy

In our analysis of the energy of the surface deflections th variant of the computer algebra code documented in Ref.

instability of the flat surface corresponds to the minimum of: 12) is used. Eleng the desired o_rder qf the expansjoar .
the energy af\,=B,=0 turning into a saddle point. Within in our caseg this program selects in a first step those ampli-

the quadratic approximation the energy hence decreas%gde combinations which are compatible with the transla-

down to ¢ with increasing amplituded, andB,. In reality, ional invariance of the problem ir direction. In our case

; ly 17 of the originally 70 terms remain after this proce-
however, already for moderate values/Ayf and B, higher- on )
order terms in the expansion of the energy have to be ingure. In a second step the ansawZ9 and(28) are used in

cluded which cure this divergence. As a result the energ € E)ou_ndary conditiong20) and (21) and the coefficients

againincreaseswith increasing amplitudeg, and B, and n:Un:Un, W are determined as polynomials in thgandB,.

: - o fter this the energy19) can be expanded up to fourth order
correspondingly a new minimum forms describing the neV\/_A‘ 9 .
stationgry surgfgce profile&®(x) and 79(x). 9 in A; andB; and up to second order ¥, andB,. Several of

We assume that the susceptibility of the ferrofluid is suf-.the remaining terms disappear after the integration over

- . implicit in the horizontal average in E¢L9). Minimizing the
ficienty small such that an expansion of the enef&§) up resulting expression i\, and B, we find that both are of

orderA?,BZ which proves the consistency of our expansion
posteriori Finally the free energy is minimized in the ampli-
tudesA; andB; of the main modes. The final expressions are
explicit but too long to be displayefd 6].

1.1 T T T T T

TABLE |. Magnetic fluid parameters used in Figs. 7-9.

Experimental parameters Dimensionless values
pM=1.69 g/cmi
p@=1.12 g/cri p1=1.51
: p¥=0.0013 g/cri p3=0.001
a 09=16.6 mN/m

FIG. 6. Dimensionless critical magnetic fiel, of the linear ~ ¢/?=25.9 mN/m 0=0.64
instability as function of the ratio- between the interface tensions d=1.54 mm d=1.0
for layer thicknessl=< (long dashey] d=2 (dasheg d=1 (dotted, x=0.8 7=0.29

andd=0.5 (solid). Other parameters as in Fig. 4.
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FIG. 7. Stationary pattern of coupled surface deflections that
evolve after the instability of the state with flat interfaces. The fer-
rofluid layer is shown in gray. Parameters are given in Table I, the
value of the external magnetic field k4.,;=1.000H,. The figure
uses dimensionless units. 3 . . . . . .

For d=c we again reproduce the results obtained for the
standard Rosensweig instability on a layer of infinite depth
[5,7]. Ford<o the two interfaces couple and the two sur-
face deflections arrange in a stable, antiphase pattern.

To elucidate this final structure in detail we consider the

case of experimentally realistic parameters collected in Table T ' 1
I. From the linear stability analysis we find for the dimen- 0 s >y
sionless wave numbet.=0.84 and for the corresponding o5 L1 s . . s s s

0.735 074 0.745 075 0.755 0.76 0.765 077

dimensionless fieldH.=0.75. The stationary interface pro- I
ext

files resulting from the weakly nonlinear analysis are dis-
played in Figs. 7-9. As can be seen the lower interface is the g 10. Maximum(full line) and minimum(dashed ling di-

dominating one. For slightly overcritical magnetic field the nensjonless thickness of the ferrofluid layer as function of the di-
lower interface already shows an array of developed Rosengnensionless external field strength for the parameters given in Table
weig ridges whereas the upper one is just gently curved by The dots correspond to the situations displayed in Figs. 7-9,
the inhomogeneous magnetic pressure resulting from thgspectively. For the field at which the minimum distance between
field modulation induced by the lower interfagBig. 7).  the interfaces shrinks to zero the layer disintegrates into an array of
With increasing field both deformations gro@ig. 8. A disconnected rolls.

particular interesting case is shown in Fig. 9 where the am-
plitudes of the surface deflections have increased to such an
extent that the two interfaces touch each other. Correspond-
ingly the ferrofluid layer stays no longer connected but dis-
integrates. In our two-dimension@d, z) model this gives rise

to the formation of parallel slices. In a more realistic three- i 1
dimensional setting, including surface variationsyinlirec- 25| /
tion as well, the layer would evolve into a regular array of
disconnectedslands A similar phenomenon occurs in the

usual Rosensweig instability on very shallow layers of fer- LT
rofluid [7]. F
12 ; ; : 05 E )
z [ \//\/_\\/ gL -
08 -
¢O, ¢@ il
o4 | FIG. 11. Region of consistency of our nonlinear treatment of the
22 1 pattern formation in the plane spanned by the dimensionless layer
o 1 thicknessd and the susceptibility. Outside the shaded region the
0213 1 fourth-order terms in the expansion of the energy are not sufficient
04 A to saturate the linear instability and higher-order terms are needed
05 - : . ” to get finite results for the amplitudes of interface deflections when
- minimizing the energy. The dashed line is the result of R&ffor
a ferrofluid layer with rigid bottom. Parameter values are from
FIG. 8. Same as Fig. 7 fdflo,;=1.01H.. Table I.
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Finally Fig. 12 gives the phase diagram of the ferrofluid

s ] sandwich structure showing the transition lines from flat in-
g T . terfaces to antiphase interface modulations and further to dis-

25| 1 - connected regions. It would be interesting to compare the

- L g location of these theoretical lines with experimental results.

TIT
TIT

7 V. CONCLUSION

068 07 07 0mM 07 07 0f In the present paper we have investigated the linear and
Hext, weakly nonlinear theory of two coupled Rosensweig insta-
bilities in a ferrofluid sandwich structure. To this end an ap-
FIG. 12. Phase diagram in the plane spanned by the dimensioroximate expression for the energy of the system was mini-
less external fieldHq,: and layer thicknesd for a ferrofluid sand- mized in the deflection amplitudes of the two interfaces
wich structure with the parameters given in Table 1. In region | bothhetween magnetic and nonmagnetic liquids. The approxi-
interfaces are flat, in region Il, ridges occur and in region lll, themate expression for the free energy was obtained from a
layer disintegrates into an array of disconnected rolls. The dashegyurth-order perturbative expansion in these interface deflec-
line indicates that for larger values of the magnetic field higher-tions. At the onset of instability the two individual Rosens-
order terms are necessary to accurately determine the location of trweig instabilities compete and depending on the concrete
transition line. In the shaded region the fourth-order terms in thﬁ/alues of the parameters one is able to “slave” the other one
energy are not sufficient to saturgte the linear instability and highert0 its unstable wave number. As a result, a stable antiphase
order terms are mandatory, cf. Fig. 11. pattern of two interacting modulated interfaces arises. For
sufficiently thin layers and sufficiently large magnetic fields
In Fig. 10 we have shown the maximum and the mini-the two curved interfaces may touch each other which brings

mum layer thickness as function of the magnetic field. The2bout the disintegration of the layer and gives rise to discon-
formation of islands occurs when the lower branch intersectgected rolls or islands. Using realistic parameter values we
with the horizontal axis. Note that, at least for the parameterg§ave estimates of the required layer thicknesses and mag-
of Table I, this happens already for a field exceeding thenetic fields necessary to observe this phenomenon in an ex-
critical one by only 4%. periment. Being perturbative in nature our theoretical analy-
With the appearance of such an island structure our theasis has a limited range of validity which we quantified by
retical model breaks down. To study the future evolution ofestimating the contributions of higher-order terms. It is pos-
the structure when increasing the field still further it is moresible though tedious to push the expansion to higherorders in
appropriate to start from a model of independent ferrofluida systematic way.
drops[18].
In omitting higher orders of the expansion of the energy
in the amplitudes of surface deflection in our nonlinear
analysis we have tacitly assumed that the fourth-order terms ACKNOWLEDGMENTS
are sufficient to saturate the linear instability, i.e., to make
E[{Q, 9] for [({9)2+({¥)2]— . This, however, is We would like to thank Reinhard Richter and Norbert
correct only if the susceptibility of the ferrofluid is not too  Buske for arousing our interest in ferrofluid sandwich struc-
large and the thickness of the layer is not too small. In tures and Reneé Friedrichs for numerous helpful discussions.
Fig. 11 we have displayed the region in ttey plane, in  This work was supported by Deutsche Forschungsgemein-
which our treatment is consistent. schaft under Grant No. FOR/301.
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